IGSL Limited

DBFL Consulting Engineers

Ballyhale Flood Relief Scheme

Factual Ground Investigation Report

Project No. 23434

August 2021

Report

M7 Business Park Naas Co. Kildare Ireland

T: +353 (45) 846176 E: info @igsl.ie W: www.igsl.ie

FLOOD RELIEF SCHEME BALLYHALE

COUNTY KILKENNY

D.B.F.L.

CONS. ENGINEERS

CONTENTS

I INTRODUCTION II FIELDWORK

II FIELDWO III TESTING

APPENDICES

I TRIAL PIT LOGS

LABORATORY DATA II

SITE PLAN III

FOREWORD

The following conditions and notes on the geotechnical site investigation procedures should be read in conjunction with this report.

Standards

The ground investigation works for this project have been carried out by IGSL in accordance with Eurocode 7 - Part 2: Ground Investigation & Testing (EN 1997-2:2007). This has been used together with complementary documents such as BS 5930 (1999), BS 1377 (Parts 1 to 9) and Engineers Ireland Specification & Related Documents for Ground Investigation in Ireland (2006). A new National Annex for use in the Republic of Ireland is currently in circulation for comment and will be adopted in the near future. In the mean time, the following Irish (IS) and European Standards or Norms are referenced:

- o IS EN 1997-2 Eurocode 7: 2007 Geotechnical Design Part 2: Ground Investigation & Testing
- o IS EN ISO 22475-1:2006 Geotechnical Investigation and Sampling Sampling Methods & Groundwater Measurements
- o IS EN ISO 14688-1:2002 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 1: Identification and Description
- o IS EN ISO 14688-2:2004 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 2: Classification Principles
- o IS EN ISO 14689-1:2004 Geotechnical Investigation and Testing Identification & Classification of Rock, Part 1: Identification & Description

Reporting

Recommendations made and opinions expressed in this report are based on the strata observed in the exploratory holes, together with the results of in-situ and laboratory tests. No responsibility can be held by IGSL Ltd for ground conditions between exploratory hole locations.

The engineering logs provide ground profiles and configuration of strata relevant to the investigation depths achieved and caution should be taken when extrapolating between exploratory points. No liability is accepted for ground conditions extraneous to the investigation points.

This report has been prepared for DBFL Consulting Engineers and the information should not be used without prior written permission. The recommendations developed in this report specifically relate to the proposed development. IGSL Ltd accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.

In-Situ Testing

Standard penetration tests were conducted strictly in accordance with Section 4.6 of IS EN 1997-2:2007. The SPT equipment (hammer energy test) has been calibrated in accordance with EN ISO 22476-3:2005 and the Energy Ratio (E_r). A calibration certificate is available upon request. The E_r is defined as the ratio of the actual energy E_{meas} (measured energy during calibration) delivered to the drive weight assembly into the drive rod below the anvil, to the theoretical energy (E_{theor}) as calculated from the drive weight assembly. The measured number of blows (N) reported on the engineering logs are uncorrected. In sands, the energy losses due to rod length and the effect of the overburden pressure should be taken into account (see IS EN ISO 22476-3:2005).

Groundwater

The depth of entry of any influx of groundwater is recorded during the course of boring operations. However, the normal rate of boring does not usually permit the recording of an equilibrium level for any one water strike. Where possible drilling is suspended for a period of twenty minutes to monitor the subsequent rise in water level. Groundwater conditions observed in the borings or pits are those appertaining to the period of investigation. It should be noted however, that groundwater levels are subject to diurnal, seasonal and climatic variations and can also be affected by drainage conditions, tidal variations etc.

Engineering Logging

Soil and rock identification has been based on the examination of the samples recovered and conforms with IS EN ISO 14688-1:2002 and IS EN ISO 14689-1:2004. Rock weathering classification conforms to IS EN ISO 14689-1:2003 while discontinuities (bedding planes, joints, cleavages, faults etc) are classified in accordance with 4.3.3 of IS EN ISO 14689-1:2003. Rock mechanical indices (TCR, SCR, RQD) are defined in accordance with IS EN ISO 22475-1:2006.

Retention of Samples

Samples shall be retained for a period of 60 days following approval of the final factual report, as detailed in the Scope of Works.

REPORT ON A SITE INVESTIGATION FOR A FLOOD RELIEF SCHEME AT BALLYHALE COUNTY KILKENNY FOR KILKENNY COUNTY COUNCIL AND DBFL CONSULTING ENGINEERS

Report No. 23434

August 2021

I Introduction

A Flood Relief Scheme is to be undertaken on a site located at Ballyhale in County Kilkenny.

An investigation of sub soil conditions in the area of the proposed development has been carried out by IGSL for consultants DBFL, on behalf of Kilkenny Co. Co.

The works have been completed in accordance with HSE and Government COVID-19 guidelines and recommendations, ensuring safety of site personnel and the general public.

Close liaison was maintained throughout with the client and consulting engineer and an appointed archaeologist was in attendance during the course of the investigation.

The scheduled site investigation included the following elements:

- Trial Pit Excavations (10 nr.)
- Geotechnical Laboratory Testing
- Environmental Laboratory Testing

This factual report includes all data from field and laboratory operations and incorporates an environmental assessment of the site area.

II Fieldwork

The development is located in Ballyhale in County Kilkenny in the vicinity of the Ballyhale River.

The exploratory locations are noted on the drawing enclosed in Appendix III. This drawing was provided by DBFL. Locations were marked out by IGSL and accurately surveyed to National Grid. Ground levels were also established.

All trial pitting works were supervised by an experienced geotechnical engineer who carefully recorded stratification, recovered samples as required and prepared detailed records with supporting photographs.

Each location was scanned electronically (CAT) to ensure that existing services were not damaged.

Trial Pits

Pits were excavated using a 5 tonne tracked excavator under engineering supervision. Detailed trial pit logs are enclosed in Appendix I. Trial Pits are referenced TP01 to TP10.

A high degree of consistency was noted in the general stratification. Topsoil (with a little FILL in places) generally overlies firm to stiff very gravelly CLAY.

In some locations a thin SAND/GRAVEL layer is noted between the upper topsoil and the gravelly CLAY.

Trial pits were terminated at relatively shallow depths (between 1.00 and 2.00 metres) in eight of the ten locations. At TP03 and TP08 excavations continued to refusal at approximately 2.80 metres.

Ground water was noted in three of the trial pits with a copious flow recorded in TP06 at 1.40 metres. Seepage only was noted in TP02 and TP09.

Samples were recovered at intervals in all trial pits and were returned to IGSL for examination and laboratory analysis.

All excavations were carefully backfilled with excavated material.

The findings are summarised in the following table.

Ref N	No. Topso	il Fill 	Gravel	Gravelly Cla	y Rock
01	0 - 0.20	0.20 -0.40		0.40 - 1.50	1.50
02	0 - 0.20		0.20 - 1.10	1.10 - 1.30	1.30
03	0 - 0.20			0.20 - 1.00	1.00
04	0 - 0.25			0.25 - 2.80	2.80
05	0 - 0.25			0.25 - 0.80	0.80 - 1.00
06	0 - 0.20		0.20 - 1.00	1.00 - 1.40	1.40
07	0 - 0.20			0.20 - 1.00	1.00
08	0 - 0.20		0.20 - 0.70	0.70 - 1.80	1.80
09	0 - 0.20			0.20 - 2.70	2.70
10	0 - 0.10	0.10 - 0.30	0.30 -	- 0.70 0.70 - 1.90	1.90

III. Laboratory Testing

A programme of laboratory testing was scheduled following completion of site operations. Geotechnical testing was carried out by IGSL in it's INAB-Accredited laboratory. Environmental and chemical testing was carried out in the UK by EUROFINS Ltd. The test programme included the following elements:

- Liquid and Plastic Limits / Moisture Content
- PSD Grading by wet sieve and hydrometer.
- Sulphate, Chloride and pH
- RILTA Suite Environmental

All test results are presented in Appendix II and are discussed briefly in the following paragraphs.

Classification

Tests on the cohesive gravelly SILT/ CLAY confirm that the material ranges from silt to clay dominant, falling partly into Class CI/CL of the standard classification and partly into the non-plastic fraction. Results are indicative of sensitive soil of low plasticity. Moisture contents of 8 to 24% were recorded.

Grading

Four samples of the overburden soils were tested using wet sieve and hydrometer analysis. The grading curves reflect some variation from gravelly silty CLAY to more granular clay-bound sandy GRAVEL. A sample from the gravel stratum in TPO2 is clean and well graded in the sand to coarse gravel range.

Sulphate, Chloride and pH

Three samples have been analysed to determine sulphate, chloride and pH values.

A Sulphate concentration (SO4 2:1 extract) of < 0.010 g/l was established with pH values of 7.5 to 8.8. A Water Soluble Chloride content of < 0.010 g/l was also established.

A sulphate design class of DS-1 (ACEC Classification for Concrete) is indicated for sulphate concentrations lower than 0.5 g/l. No special precautions are therefore deemed necessary for protection of below ground concrete.

Environmental RILTA Suite

Three samples of soil from the trial pits were submitted for detailed environmental analysis to RILTA Suite (WAC) parameters. Specialist environmental consultants have examined and assessed the test data.

They confirm that all samples are classified as INERT in accordance with the Landfill Waste Acceptance Criteria (WAC). Material excavated during construction may be disposed of within the site or off site to a suitably licensed landfill facility.

No traces of Asbestos were determined during routine testing.

<u>IGSL/JC</u> AUGUST 2021 Appendix I

Trial Pit Records

REPORT NUMBER

23434

CON	ITRACT	Ballyhale flood relief scheme						TRIAL P	IT NO.	TP0	1 et 1 of 1	
LOG	GED BY	S.Hannon	CO-ORDINAT		635,3	46.78 E 44.67 N		DATE ST	TARTED OMPLETI	06/07	7/2021 7/2021	
CLIE	NT INEER	Kikenny county council DFBL	GROUND LEV	/EL (m)	55.70			EXCAVA METHOI		5T tra	acked vator	
									Samples		'a)	meter
		Geotechnical Description	1	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSO	IL		11 11 11 11 11 11 11 11 11 11 11 11 11	0.20	55.50						
	plastic a	GROUND firm brown sandy grave and glass bottles. Gravels are sub	lly CLAY with angular to sub	*%	0.20	55.30						
	Firm to s	I and fine to coarse. stiff grey sandy gravelly CLAY wit content and low boulder content. Ilders are angular to sub angular	h medium Gravels cobbles and fine to		0.70	55.00		AA155654	В	0.50-0.50		
1.0	sandy s	stiff multicoloured green purple al lity gravelly CLAY. Gravels are an l and fine to coarse. Pit terminate red yellow and red sandstone bed	gular to sub ed - refusal on					AA155655	5 B	1.30-1.30		
	End of 1	Trial Pit at 1.50m		<u> </u>	1.50	54.20						
2.0												
- - -												
- -												
3.0												
- - - - 4.0												
- 4.0 - -												
- - -												
Gro i Dry	undwater (Conditions										
, 												
Stat Stat												
	eral Rema scanned	rks location for services										

REPORT NUMBER

23434

TRIAL PIT NO. **TP02** CONTRACT Ballyhale flood relief scheme SHEET Sheet 1 of 1 **CO-ORDINATES** 654,251.93 E **DATE STARTED** 06/07/2021 **LOGGED BY** S.Hannon 635,429.25 N DATE COMPLETED 06/07/2021 GROUND LEVEL (m) 53.95 **EXCAVATION** 5T tracked **CLIENT** Kikenny county council **METHOD** excavator **ENGINEER** DFBL Hand Penetrometer (KPa) Samples Vane Test (KPa) Water Strike Geotechnical Description Elevation Sample Ref Legend Depth (m) Depth Type **TOPSOIL** 0.20 53.75 Firm grey sandy gravelly CLAY. Gravels are angular to sub angular and fine to coarse. 0.40 53.55 Ø Medium dense purpleish grey mottled brown very gravelly O AA155656 0.50-0.50 SAND with medium cobble content and low boulder content. Gravels cobbles and boulders are angular to sub Ö rounded and fine to coarse. 1.0 1.10 52.85 Firm greenish grey mottled yellow slightly sandy very gravelly CLAY. Gravels are sub angular to sub rounded AA155657 1.10-1.30 1.30 52.65 and fine to coarse. Pit terminated - refusal on weathered yellow and red sandstone bedrock. End of Trial Pit at 1.30m 2.0 3.0 4.0 **Groundwater Conditions** Seepage 1.3m GDT 8/7/21

Stability Stable

23434A.GPJ IGSL

TP LOG

IGSL

General Remarks

CAT scanned location for services

REPORT NUMBER

23434

	TDAGT	D. II. I. II. II. II. II. II. II. II. II						TDIALD	IT NO	TDA	2	
CON	TRACT	Ballyhale flood relief scheme						TRIAL P SHEET	II NU.	TP0 Shee	3 et 1 of 1	
LOG	GED BY	S.Hannon	CO-ORDINAT		635,46	23.81 E 64.77 N		DATE S			7/2021 7/2021	
CLIE	INEER	Kikenny county council DFBL	GROUND LE	v⊨∟ (m)	53.86	1		EXCAVA METHOI			acked vator	
									Samples	5	Pa)	meter
		Geotechnical Descripti	ion	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSO	IL		7 7 7 7	0.20	53.66						
-	cobble	own slightly sandy gravelly CLA content. Gravels and cobbles ar d and fine to coarse.	Y with medium re angular to sub	9 0	0.20	53.46						
- - - - - 1.0	Yellowis cobble of and bou coarse. red sand	ship to coarse. Ship town firm sandy gravelly CL content and low boulder content alders are angular to sub rounder Pit terminated - refusal on weardstone bedrock. Frial Pit at 1.00m	t. Gravels cobbles ed and fine to		1.00	52.86		AA155658	в В	0.70-0.70		
2.0												
- - - - - - - - -												
Dry		Conditions										
Stab Stab	ility le				_							
	eral Rema scanned	rks location for services										

REPORT NUMBER

23434

CON	TRACT	Ballyhale flood relief scheme						TRIAL P	IT NO.	TP0	4 et 1 of 1	
LOG	GED BY	S.Hannon	CO-ORDINAT	ES	654,10 635,4	68.07 E 12.34 N		DATE S	TARTED	06/07	7/2021 7/2021	
CLIE ENGI	NT INEER	Kikenny county council DFBL	GROUND LEV	/EL (m)	59.26			EXCAVA METHOI	ATION	5T tra	acked vator	
									Samples	;	a)	neter
		Geotechnical Description	1	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	angular Firm to medium Gravels and fine	nt brown sandy silty gravelly CLA' to sub rounded and fine to coarse stiff light brown sandy silty gravell a cobble content and medium bou cobbles and boulders are angula to coarse.	e. y CLAY with Ider content. Ir to sub rounded		0.25 0.40	59.01 58.86 57.96		AA155659) B	0.60-0.60		
2.0	Gravels and fine	dense brownish grey clayey very dium cobble content and medium cobbles and boulders are angula to coarse. Pit terminated - refusa red yellow and red sandstone bed	r to sub rounded all on moderately					AA155660 AA155661		1.50-1.50 2.50-2.50		
3.0	End of ⁻	Trial Pit at 2.80m			2.80	56.46						
Grou Dry	ındwater	Conditions										
	eral Rema	i rks location for services										

REPORT NUMBER

23434

CON	TRACT	Ballyhale flood relief scheme						TRIAL P	IT NO.	TP0	5	
		,	CO-ORDINAT	ES	654 n	79.52 E		SHEET		Shee	et 1 of 1	
LOG	GED BY	S.Hannon			635,38	84.74 N		DATE ST	OMPLETI		7/2021 7/2021	
CLIE	NT NEER	Kikenny county council DFBL	GROUND LEV	/EL (m)	60.33			EXCAVA METHOI		5T tra exca	acked vator	
									Samples		⁵ a)	meter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSO			7 71/	0.25	60.08						
	Firm bro content. coarse.	own sandy gravelly CLAY with med Gravels are angular to sub rounde	ium cobble ed and fine to		0.50	59.83		1 1 4 5 5 0 0 0		0.50.0.50		
	Firm to s	stiff yellowish brown sandy very gradium cobble content and medium b	oulder content.		0.80	59.53		AA155662	! В	0.50-0.50		
1.0	\and fine Weathers	cobbles and boulders are angular to coarse. red rockhead recovered as angula s of green and red sandstones and	r cobbles and		1.10	59.23						
		terminated at 1.1 m. Frial Pit at 1.10m	/									
2.0												
3.0												
4.0												
-												
· -												
Grou Dry	ndwater (Conditions										
Stabi Stabl	i lity e											
	eral Rema	rks location for services										
OAI	ocarii160 l	SOUROIT TOT SELVICES										

REPORT NUMBER

23434

CON	TRACT	Ballyhale flood relief scheme						TRIAL P	IT NO.	TP0	6 et 1 of 1	
LOG	GED BY	S.Hannon	CO-ORDINAT		635,2	38.45 E 31.70 N		DATE S	TARTED OMPLET	07/07	7/2021 7/2021	
CLIE	NT INEER	Kikenny county council DFBL	GROUND LEV	/EL (m)	56.36			EXCAVA METHOI		5T tra exca	acked vator	
									Samples		,a)	neter
		Geotechnical Description	1	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSO			11/2 11/2 11/2 11/2 11/2 11/2 11/2 11/2	0.20	56.16						
	high cob cobbles	dense light grey clayey very sand ble content and low boulder con and boulders are angular to sub	tent. Gravels		0.50	55.86						
	high cob cobbles	dense greyish brown very gravel oble content and low boulder cont and boulders are angular to sub	ent. Gravels					AA155663	В	0.60-0.60		
1.0	to coars Firm to s	e. stiff purplish grey slightly sandy ve ith medium cobble content and lo	ery gravelly		1.00	55.36						
	content. rounded to contir	Gravels cobbles and boulders are and fine to coarse. Pit terminate one excavating or sample.	e angular to sub		1.40	54.96						
	End of T	rial Pit at 1.40m										
2.0												
_												
3.0												
4.0												
	Indwater (flow at 1.4	Conditions										
Stab Stab												
Gene	eral Rema	rks										
		ocation for services										

REPORT NUMBER

23434

CC	ITAC	RACT	Ballyhale flood relief scheme						TRIAL P	IT NO.	TP0	7 et 1 of 1	
LC	GG	ED BY	S.Hannon	CO-ORDINAT	ES		70.40 E 74.19 N		DATE S	TARTED OMPLETI	07/07	7/2021 7/2021	
	JEN IGIN	T EER	Kikenny county council DFBL	GROUND LEV	/EL (m)	56.34			EXCAVA METHO		5T tra	acked vator	
										Samples		a)	neter
			Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0		TOPSOI		N	1/ 1/ 1// 1/ 1//	0.20	56.14						
- - - -		Stiff yello	yish brown sandy gravelly CLAY. Go to sub rounded and fine to coarse. Towish brown slightly sandy gravelly table content and low boulder content and boulders are angular to sub ro	CLAY with		0.45	55.89	,	AA155664	В	0.50-0.70		
1.0			e. Pit terminated - refusal on weath sandstone bedrock. Trial Pit at 1.00m	ered yellow		1.00	55.34						
- - -													
2.0	0												
-													
3.0	0												
-													
4.0	0												
-													
-													
		dwater (Conditions		-				1				
	abili able												
Ge CA		al Rema canned l	rks ocation for services										
2													

REPORT NUMBER

23434

CON	ITRACT	Ballyhale flood relief scheme						TRIAL P	IT NO.	TP0		
LOG	GED BY	S.Hannon	CO-ORDINAT	ES	654,2 635,2	98.98 E 27.83 N		DATE S	TARTED OMPLETI	07/07	t 1 of 1 7/2021 7/2021	
CLIE	NT INEER	Kikenny county council DFBL	GROUND LEV	/EL (m)	56.70			EXCAVA METHOI			acked vator	
									Samples		a)	meter
		Geotechnical Description	1	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSO			7 1 1 1	0.20	56.50						
-		eyish brown sandy CLAY.			0.40	56.30						
- - -	medium	dense purpleish grey clayey grav cobble content and low boulder and boulders are angular to sub	content. Gravels		0.70	56.00		AA155665	Б В	0.50-0.50		
- - - - - - - -	Firm to s slightly of low bout angular	es. stiff pale green mottled yellow slig gravelly silty CLAY with low cobbl- lder content. Gravels cobbles and to sub rounded and fine to coarse on weathered yellow and red san	l boulders are e. Pit terminated					AA155666	3 В	1.00-1.20		
-	End of 1	rial Pit at 1.80m		A	1.80	54.90						
2.0												
-												
-												
Ē												
3.0												
- -												
-												
_												
4.0												
-												
-												
- Cura	undweter 1	Conditions										
_	unuwater (Conditions										
Stab Stab												
Gen CAT	eral Rema scanned	rks location for services										
Stab Stab CAT												

REPORT NUMBER

23434

	TRACT	Ballyhale flood relief scheme	CO-ORDINAT	ES	654.1	55.37 E		TRIAL PI SHEET DATE ST			9 t 1 of 1 7/2021	
_OG	GED BY	S.Hannon				10.35 N		DATE ST				
CLIE	NT NEER	Kikenny county council DFBL	GROUND LEV	/EL (m)	50.41			EXCAVA METHOD		5T tra		
			·						Samples	6	â	neter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	TOPSO	IL		7/1/2	0.00	50.04						
,	are ang Stiff bro content	Firm brown mottled dark brown sandy gravelly CLAY with medium cobble content. Gravels and cobbles are angular			0.20 0.35 0.70	50.21 50.06 49.71		AA155667	В	0.50-0.70		
1.0	Firm bro	own mottled dark brown sandy gra I cobble content. Gravels and cobb ounded and fine to coarse.	velly CLAY with oles are angular					AA155668	В	1.20-1.20		
2.0	medium Gravels	stiff yellowish brown sandy gravell a cobble content and medium boul- cobbles and boulders are angular to coarse. Pit terminated refusal of s.	der content. r to sub rounded		1.80	48.61		AA155669	В	2.20-2.40		
	End of	Trial Pit at 2.70m			2.70	47.71						
3.0												
4.0												
	i ndwater (page at 2r	Conditions n										
Stabi Stabl												
	eral Rema scanned	rks location for services										
UAT	scanned	location for services										

REPORT NUMBER

23434

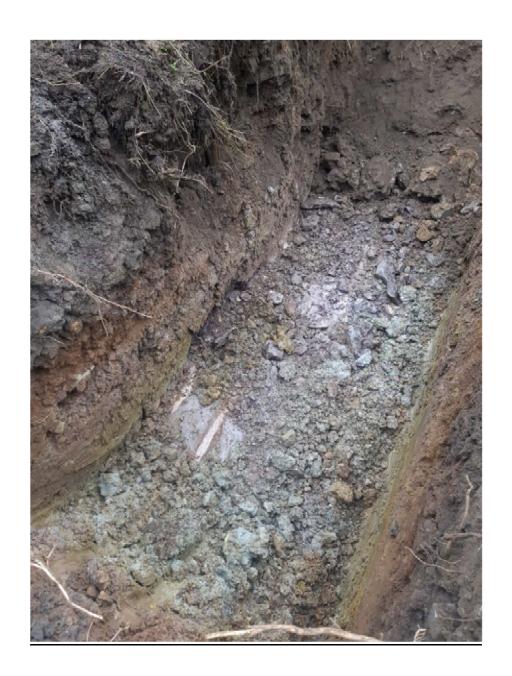
TRIAL PIT NO. **TP10** CONTRACT Ballyhale flood relief scheme SHEET Sheet 1 of 1 **CO-ORDINATES** 654.172.40 E **DATE STARTED** 07/07/2021 **LOGGED BY** S.Hannon 635,792.57 N DATE COMPLETED 07/07/2021 GROUND LEVEL (m) 50.32 **EXCAVATION** 5T tracked CLIENT Kikenny county council **METHOD** excavator **ENGINEER** DFBL Hand Penetrometer (KPa) Samples Vane Test (KPa) Water Strike Geotechnical Description Elevation Sample Ref Depth (m) Type **TOPSOIL** 0.10 50.22 MADE GROUND comprising stiff to very stiff light brown sandy gravelly CLAY with high cobble content. Gravels 0.30 50.02 and cobbles are angular to sub rounded and fine to coarse. Very difficult to excavate. 0.50 49.82 AA155670 0.50-0.70 Firm brown sandy gravelly CLAY. Gravels are angular to sub rounded and fine to coarse. Ö 0.70 49.62 Medium dense purpleish grey gravelly SAND with medium cobble content. Gravels and cobbles are angular to sub rounded and fine to coarse. Firm to stiff yellowish brown slightly sandy gravelly CLAY with medium cobble content and medium boulder content. AA155671 В 1.30-1.50 Gravels cobbles and boulders are angular to sub rounded and fine to coarse. Pit terminated - refusal on weathered yellow and red sandstone bedrock or possible very large boulders. 1.90 48.42 End of Trial Pit at 1.90m 2.0 3.0 4.0 **Groundwater Conditions** Dry GDT 8/7/21

Stability
Stable

General

IGSL TP LOG

General Remarks

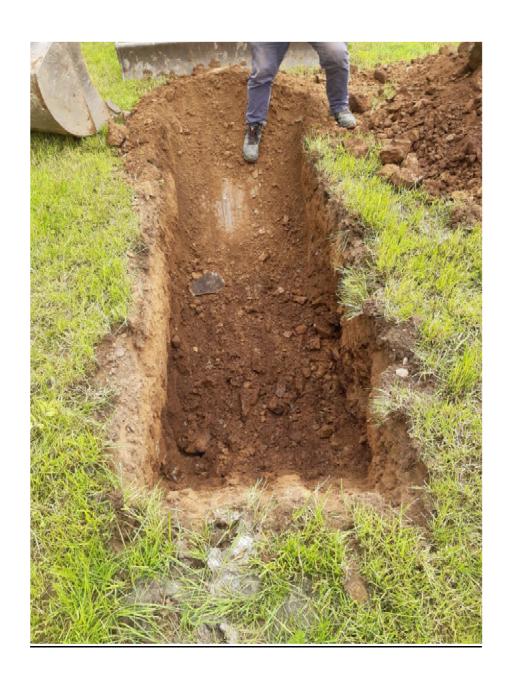

CAT scanned location for services

Ballyhale FRS – 23434

Trial pit photos.

<u>TP01</u>

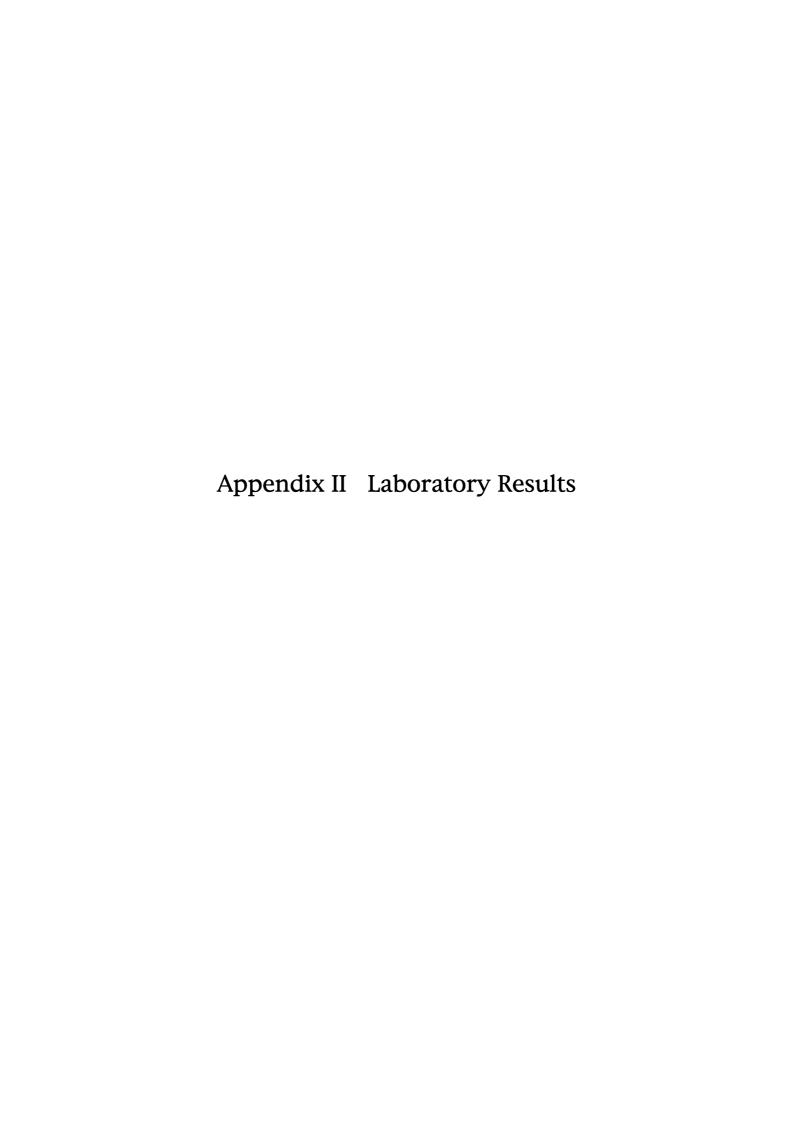
<u>TP03</u>



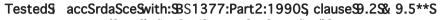
<u>TP07</u>

TP08

TP09



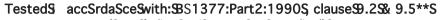
IGSL Ltd Materials Laboratory Unit J5, M7 Business Park Newhall, Naas Co. Kildare 045 846176


Test Report

Determination of Moisture Content, Liquid & Plastic Limits

Co. Kildare	ewhall, Naas b. Kildare 5 846176				Tested in accordance with BS1377:Part 2:1990, clauses 3.2, 4.3, 4.4 & 5.3**										
10010170	Report No.	R125586		Contract	No.	23434		Contract N	Name:	Ballyhale	FRS				
	Customer	DBFL													
	Samples Re	eceived:	13/08/21	Date Tes	sted:	13/08/21									
BH/TP*	Sample No.	Depth* (m)	Lab. Ref	Sample Type*	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425μm	Preparation	Liquid Limit Clause	Classification (BS5930)	Description		
TP01	AA155655	1.3	A21/3803	В	20	36	17	19	84	WS	4.4		Brown sandy gravelly CLAY		
TP03	AA155658	0.7	A21/3805	В	8.7	32	NP	NP	21	WS	4.4		Brown sandy gravelly	SILT	
TP06	AA155663	0.6	A21/3807	В	8.2	31	NP	NP	21	WS	4.4		Brown sandy gravelly	SILT	
TP08	AA155666	1.0	A21/3809	В	21	33	16	17	95	WS	4.4	CL	Brown sandy gravelly	CLAY	
TP09	AA155669	2.2	A21/3810	В	17	34	18	16	44	WS	4.4	CL	Brown slightly sandy, gravelly,	CLAY with some cobbles	
TP10	AA155671	1.3	A21/3808	В	24	44	19	25	72	WS	4.4	СІ	Brown sandy gravelly	CLAY	
	-	WS - Wet sieved AR - As received NP - Non plastic			Sample Type:	U - Undisturb			, ,		as received co		otherwise noted. 7892-12.		
	Liquid Limit Clause:	4.3 Cone Penetro 4.4 Cone Penetro							•		•		otes Customer supplied rom the Laboratory.	d information.	
	·			Persons authorized to approve reports							Date	Page			
IG 	SL Ltd M	aterials La	boratory			H Byrne (La	aboratory I	Manager)		WR	jene		20/08/21	1 of 1	

DetermiSatiS of Particle Size DistributiS

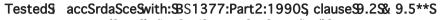

(S te: SedimeStatiS stageSn tSaccredited)S

particleS				tractSNS.S	23434S	RepSrt S NS.S	R125585S		-	
sizeS	passiSgS		ı	tract \$ Name:S	Ballyhale S FRS	S			Results&elateS nly&S the&peci	meS tested\$S as\$ece
75S	100S	OBBLES		BH/TP*SS	TP02S				cSnditiS unlessS therwiseS te	ed.S*SdeS tesS ustSme
63S	97S	000000	.	ampleSNS.*S	AA155656S	Lab.S ample	eSNS.S	A21/3804S	suppliedSS rmatiS OpiS sS	aS i6terpretatiS _{sS} are
50S	75S		I	ampleSType:S	BS				utsideStheScSpeS fSaccreditat	:iS.s
37.5S	69			Depth*S(m)S	0.50S	ustSmer:S	DBFLS		This&epSrt&hallS t&be&eprSdu	ucedSexceptSS fullSwith
28S	62S			Date Received S					SheSvritteS apprSvalS fSheS_ab	SratSry.S
20S	54S		I	DescriptiS :S	BrSwS slight	ly&layey,\$very	ySsaSdy,SGRAVELS	withS ccasiS als	cSbblesS	
14S	49	GRAVELS								
10S	43S	GNAVLLS	I	Remarks	NSte:S**SlauseS9.2Sa	SdS lause\$9.5S f\$8S137	77:PartS:1990ShaveSbeeS su	persededSbySS017892-4:2	2 ampleSsizeSdidS tSneet9.heSequiremeStsS fSBS1377	S
6.3S	37S						0.158	0.3S .425\$ 0.6S	S 25 25 S	ν _{τ.} ν νν
5S	34S						0.0639	0.3S 0.425\$ 0.6S 1.18S	2 3.358 5.35 10S 14S 20S	283 37.5 508 638 638
3.35S	30S		100S-							
2S	25S		90S-							
1.18S	20S		<u>∞</u> 80S-							╟╶╟┈╎╢┈╟ ┨
0.6S	15S		SS 70S-							
0.425S	12S	ANDS	Sis 608-							
0.3S	10S		se 50S-							
0.15S	6S		Stage 408-							
0.063S	4S		e e							
			20S-							
		ILT/SLAYS	10S-							
		IL1/SLA1S	0S-					<u> </u>		
			0.0	0.00 0.00	D1S	0.01S	0.1S	1S	10S	100S
					LAYS	ILTS	ieveSizeS(mm)S	S ANDS	RAVELS	
		1001.0	. 104 :				ApprSvedSby:		Date:	PageS :
		IGSLS.	.ta y Mater	ials¶abSratSr	y5		A Begane	_	20/08/21S	1S f 1S

Byene

DetermiSatiS of Particle Size DistributiS

(S te:\$SedimeStatiS stage\$n tSaccredited)S


63S 100S 50S 100S	DBBLES		tract\$\\S.S tract\$\\ame:\S	23434S	RepSrt S NS.S	R125582S			
75S 100S 01 63S 100S 50S 100S			tract\$Name:S						
63S 100S 01 50S 100S				Ballyhale S FRS	5			ResultsSelateS nlySS theSpec	cimeS tested\$S as\$eceived
63S 100S 50S 100S	JERLES I		BH/TP*SS	TP04S				cSnditiS unlessS therwiseS	ted.\$*\$deS tesS ustSmerS
	ODDLLS		ampleSNS.*S	AA155660S	Lab.S ample	:SNS.S	A21/3806S	suppliedSS rmatiS OpiS sS	aS interpretations ares
			ampleSType:S	BS				utside&heScSpeS fSaccredita	atiS S
37.5S 100S			Depth*S(m)S	1.50S	ustSmer:S	DBFLS		This&epSrt&hallS t&e&eprSc	luced&xceptSS fullSwitho
28S 99S			Date Received S	13/08/202	1 SDateSTestiS	g S startedS	13/08/2021	heSvritteS apprSvalS f&hes_a	bSratSry.S
20S 95S			DescriptiS :S	BrSwS clayey	y/silty,\$very\$s	aSdy, S GRAVELS			
14S 94S CR	RAVELS								
10S 89S GR	KAVELS		Remarks	NSte:5**Slause59.25a	SdS lause\$9.5S f\$8S137	77:Part\$:1990\$have\$bee\$ su	persededSpySSO17892-4:	2016SS	
6.3S 80S						0.158	3S 425\$ 6S 18S	S S S S S S S S S S S S S S S S S S S	SS SS SS
5S 74S						0.063%	0.3S 0.425\$ 0.6S 1.18S	2 3.35% 5 6.3S 10S 14S 20S	28S 37.5 50S 63S 75S
3.35S 66S		100S							
2S 54S		90S							
1.18S 45S		<u>∞</u> 80S							
0.6S 36S		PerceStage\$passiSgg(S) S -205 -206 -208 -208 -208 -208							
0.425S 31S	ANDS	Sig 60S							
0.3S 26S		န္တီ 50S-						$X \sqcup \sqcup \sqcup \sqcup \sqcup$	
0.15S 19S		300 tage 405							
0.063S 14S		ceSt							
		20S							
	T/SLAYS	10S							
	1/SLA15	os						<u> </u>	
		0.00	0.0 OO	01S	0.01S	0.1S	1S	10S	100S
				LAYS	ILTS	ieve&izeS(mm)S	ANDS	RAVELS	
						ApprSvedSby:		Date:	PageS :

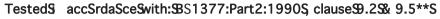
IGSL\$Ltd\$Materials\$LabSratSry\$

1S f 1S

20/08/21S

DetermiSatiS of Particle Size DistributiS

(S te:SedimeStatiS stageSn tSaccredited)S


particleS				tract\$NS.S	23434S	RepSrt S NS.S	R125583S			
sizeS	passiSgS			tract \$ Name:S	Ballyhale \$ R\$	•			Results Selate Snly S the Spec	cimeS testedSS asSeceive
75S	100S	OBBLES		BH/TP*SS	TP07S				cSnditiS unlessS therwiseS	ted.StSdeS tesS ustSmer:
63S	100S	ODDLLS		ampleSNS.*S	AA155664S	Lab.S ample	SNS.S	A21/3808S	suppliedSS rmatiS OpiS sS	aS _S i S terpretatiS _{sS} areS
50S	100S			ampleSType:S	BS				utside&he&cSpeS f&ccredita	atiS _S
37.5S	100S			Depth*S(m)S	0.50S	ustSmer:S	DBFLS		ThisSepSrtShallS tSpeSeprSo	ducedSexceptSS fullSwitho
28S	100S			Date Received S	13/08/2021	\$Date\$TestiSq	g S startedS	13/08/2021	heSwritteS apprSvalS f&hesLa	abSratSry.S
20S	97S			DescriptiS :S	BrSwS slightly	ySsaSdy,Ssligh	tlySgravelly,S ILT/	/SLAYS		
14S	96S	GRAVELS								
10S	94S	GRAVELS		Remarks	NSte:\$**Slause\$9.2\$aSi	dS lause\$9.5S f\$8S137	7:Part∑:1990\$have\$beeS su	persededSbySSO17892-4:	2016SS	
6.3S	92S						0.158	0.3S 0.425\$ 0.6S	2 3.358 5 6.38 108 148 208	ა <u>ა .</u> ა ააა
5S	89S						0.0639	0.3	2 3.358 5 6.3S 10S 14S 20S	28S 37.58 50S 63S 63S
3.35S	86S		100S-							
2S	81S		90S-					 		
1.18S	78S		<u>s</u> 80s-							
0.6S	75S		SS 70S-					++++		
0.425S	73S	ANDS	Siss 60S							
0.3S	72S		हुँ इन्हें 50S-							
0.15S	68S		PerceStage\$passiSg3(S)S							
0.063S	61S		ceSt							
			20S-							
		ILT/SLAYS	10S-							
		IL1/3LA13	0S						<u> </u>	
			0.0	0.01S 0.0	J1S	0.01S	0.1S	1S	10S	100S
					LAYS	ILTS	ieve&ize{(mm)}	S ANDS	RAVELS	
			• • •				ApprSvedSby:		Date:	PageS :
		ICCLO	+404-+		C		IN TRACTION THE TOTAL	•		1 7

IGSL\$Ltd\$Materials\$LabSratSry\$

1S f 1S

20/08/21S

DetermiSatiS of Particle Size DistributiS

(S te:SedimeStatiS stageSn tSaccredited)S

particleS				tract9NS.S	23434S	RepSrt S NS.S	R125584S			
sizeS	passiSgS		1	tract S Name:S	Ballyhale \$ FRS				ResultsSelateS nlyStS theSpec	imeS tested\$S as\$eceiver
75S	100S	OBBLES	E	BH/TP*SS	TP09S				cSnditiS unlessS therwiseS t	ed.\$*\$deS tesS ustSmerS
63S	87S	OBBLES		ampleSNS.*S	AA155669S	Lab.S amples	NS.S	A21/3810S	supplied\$\{\sigma}\{\sigma}\{\rmatiS}\{\rmatiS}\{\rmatiS}\{\rmatiS}\{\rmatiS}\{\rmatiS}\{\rmstar	aS _S i6terpretatiS _{sS} areS
50S	81S			ampleSType:S	BS				utside&he&cSpeS f&ccredita	tiS.S
37.5S	78S		[Depth*S(m)S	2.20\$	ustSmer:S	DBFLS		This&epSrt&hallS t&be&eprSd	ucedSexceptSS fullSwitho6
28S	78S		[Date\$Received\$	13/08/2021	\$Date\$Testi\$g	SstartedS	13/08/2021	SheSwritteS apprSvalS fSheSal	oSratSry.S
20S	73S		С	DescriptiS :S	BrSwS slightl	ySsaSdy,Sgrave	elly,S LAYSwithSsSi	me&SbblesS		
14S	68S	GRAVELS								
10S	65S	GRAVELS	F	Remarks	NSte:5**Slause59.25aS	idS lause\$9.5S f\$8S137	7:PartS:1990ShaveSbeeS supe	ersededSbySS017892-4:	2 ampleSsizeStlidS tSneetScheSrequiremeStsS fSBS1377	7S
6.3S	60S						0.158	88	S S S S S S S S S S S S S S S S S S S	S S S S S S S S S S S S S S S S S S S
5S	58S						0.063%	0.425\$ 0.6	2 3.355 5.35 108 148 208	28S 37.5 50S 758S 758S
3.35S	55S		100S							
2S	51S		908							
1.18S	47S		<u>s</u> 80S							
0.6	41S		<u>S</u> 70S—							
0.425S	38S	ANDS	gSiss 60S							
0.3S	33S		SS 505							
0.15S	27S		တ်							
0.063S	21S		-S04 Ce							
0.037S	19S								 	
0.027S	17S		20S						1	
0.017S	15S	U.T./CL A\/C	10S							
0.010S	13S	ILT/SLAYS	os						<u> </u>	
0.007S	12S		0.000	0.00)1S	0.01S	0.1S	1S	10S	100S
0.005S	11S				LAYS	ILTS	ieve\$size{mm}\$	ANDS	RAVELS	
0.001S	10S						. ,		0	
		<u></u>					ApprSvedSby:		Date:	PageS :

IGSL\$Ltd\$Materials\$LabSratSry\$

1S f 1S

20/08/21S

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 21-28502-1

Initial Date of Issue: 25-Aug-2021

Client IGSL

Client Address: M7 Business Park

Naas

County Kildare

Ireland

Contact(s): Darren Keogh

Project 23434 Ballyhale FRS (DBFL)

Quotation No.: Date Received: 17-Aug-2021

Order No.: Date Instructed: 17-Aug-2021

No. of Samples: 6

Turnaround (Wkdays): 7 Results Due: 25-Aug-2021

Date Approved: 25-Aug-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Results - Leachate

Client: IGSL			Che	mtest Jo	ob No.:	21-28502	21-28502	21-28502
Quotation No.:		(Chemte	st Sam	ple ID.:	1262174	1262176	1262178
Order No.:			Clie	nt Samp	le Ref.:	AA155654	AA155659	AA155667
			Sa	ample Lo	ocation:	TP01	TP04	TP09
				Sample	е Туре:	SOIL	SOIL	SOIL
				Top Dep	oth (m):	0.50	0.60	0.50
Determinand	Accred.	SOP	Type	Units	LOD			
рН	U	1010	10:1		N/A	8.2	8.1	8.2
Ammonium	U	1220	10:1	mg/l	0.050	< 0.050	0.058	< 0.050
Ammonium	N 1220 10:		10:1	mg/kg	0.10	0.46	0.62	0.35
Boron (Dissolved)	U 1455 10:1		10:1	mg/kg	0.01	0.14	< 0.01	< 0.01
Benzo[j]fluoranthene	N 1800 10:			μg/l	0.010	< 0.010	< 0.010	< 0.010

Results - Soil

Client: IGSL				Job No.:	21-28502	21-28502	21-28502	21-28502	21-28502	21-28502
Quotation No.:				nple ID.:	1262174	1262175	1262176	1262177	1262178	1262179
Order No.:				ple Ref.:	AA155654	AA155658	AA155659	AA155663	AA155667	AA155668
		5		₋ocation:	TP01	TP03	TP04	TP06	TP09	TP09
				ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	epth (m):	0.50	0.70	0.60	0.60	0.50	1.20
			Asbes	stos Lab:	COVENTRY		COVENTRY		COVENTRY	
Determinand	Accred.	SOP	Units	LOD						
ACM Type	U	2192		N/A	-		-		-	
Asbestos Identification	U	2192		N/A	No Asbestos Detected		No Asbestos Detected		No Asbestos Detected	
Moisture	N	2030	%	0.020	12	8.3	10	7.3	6.5	11
pH (2.5:1)	N	2010		4.0		[A] 8.0		[A] 7.5		[A] 8.8
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	[A] < 0.40		[A] < 0.40		[A] < 0.40	
Magnesium (Water Soluble)	N	2120	g/l	0.010	-	[A] < 0.010		[A] < 0.010		[A] < 0.01
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010		[A] < 0.010		[A] < 0.010		[A] < 0.01
Total Sulphur	U	2175	%	0.010		[A] < 0.010		[A] 0.018		[A] 0.01 ²
Sulphur (Elemental)	U	2180	mg/kg	1.0	[A] 2.7		[A] 1.8		[A] 1.7	
Chloride (Water Soluble)	U	2220	g/l	0.010		[A] < 0.010		[A] < 0.010		[A] < 0.01
Nitrate (Water Soluble)	N	2220	g/l	0.010		< 0.010		< 0.010		< 0.010
Cyanide (Total)	U	2300	mg/kg	0.50	[A] < 0.50		[A] < 0.50		[A] < 0.50	
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	[A] 0.91		[A] < 0.50		[A] < 0.50	
Ammonium (Water Soluble)	U	2220	g/l	0.01	. ,	< 0.01	, ,	< 0.01	, ,	< 0.01
Sulphate (Acid Soluble)	U	2430	%	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] 0.010	[A] < 0.01
Arsenic	U		mg/kg	1.0	2.1		21		8.4	
Barium	U	_	mg/kg	10	48		56		24	
Cadmium	U	2450	mg/kg	0.10	< 0.10		0.76		0.26	
Chromium	U		mg/kg	1.0	8.1		16		11	
Molybdenum	U		mg/kg	2.0	< 2.0		< 2.0		< 2.0	
Antimony	N		mg/kg	2.0	< 2.0		< 2.0		< 2.0	
Copper	U		mg/kg	0.50	8.9		34		14	
Mercury	U		mg/kg	0.10	< 0.10		< 0.10		< 0.10	
Nickel	U		mg/kg	0.50	8.5		40		27	
Lead	U		mg/kg	0.50	11		19		7.8	
Selenium	U		mg/kg	0.20	< 0.20		0.68		0.29	
Zinc	U		mg/kg	0.50	26		49		31	
Chromium (Trivalent)	N	_	mg/kg	1.0	8.1		16		11	
Chromium (Hexavalent)	N		mg/kg	0.50	< 0.50		< 0.50		< 0.50	
Mineral Oil (TPH Calculation)	N		mg/kg	10	< 10		< 10		< 10	
Aliphatic TPH >C5-C6	N		mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aliphatic TPH >C6-C8	N		mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aliphatic TPH >C8-C10	U		mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aliphatic TPH >C12-C16	Ü	_	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aliphatic TPH >C21-C35	U		mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aliphatic TPH >C35-C44	N		mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	

Results - Soil

Client: IGSL				Job No.:	21-28502	21-28502	21-28502	21-28502	21-28502	21-28502
Quotation No.:				nple ID.:	1262174	1262175	1262176	1262177	1262178	1262179
Order No.:				ple Ref.:	AA155654	AA155658	AA155659	AA155663	AA155667	AA155668
				_ocation:	TP01	TP03	TP04	TP06	TP09	TP09
				ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				epth (m):	0.50	0.70	0.60	0.60	0.50	1.20
				stos Lab:	COVENTRY		COVENTRY		COVENTRY	
Determinand	Accred.	SOP	Units	LOD						
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 5.0		[A] < 5.0		[A] < 5.0	
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aromatic TPH >C16-C21	U		mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aromatic TPH >C21-C35	U		mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 5.0		[A] < 5.0		[A] < 5.0	
Total Petroleum Hydrocarbons	N		mg/kg	10.0	[A] < 10		[A] < 10		[A] < 10	
Benzene	U	2760	μg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Toluene	U	2760	μg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Ethylbenzene	U	2760	μg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
m & p-Xylene	U	2760	μg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
o-Xylene	U	2760	μg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Naphthalene	N		mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Acenaphthylene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Acenaphthene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Fluorene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Phenanthrene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Anthracene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Fluoranthene	N	2800	mg/kg	0.010	[A] 0.072		[A] < 0.010		[A] < 0.010	
Pyrene	N		mg/kg	0.010	[A] 0.080		[A] < 0.010		[A] < 0.010	
Benzo[a]anthracene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Chrysene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Benzo[b]fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Benzo[k]fluoranthene	N		mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Benzo[a]pyrene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Indeno(1,2,3-c,d)Pyrene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Benzo[g,h,i]perylene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Coronene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Total Of 17 PAH's	N	2800	mg/kg	0.20	[A] < 0.20		[A] < 0.20		[A] < 0.20	
PCB 28	N	2815	mg/kg	0.0010	[A] < 0.0010		[A] < 0.0010		[A] < 0.0010	
PCB 52	N	2815	mg/kg	0.0010	[A] < 0.0010		[A] < 0.0010		[A] < 0.0010	
PCB 90+101	N	2815	mg/kg		[A] < 0.0010		[A] < 0.0010		[A] < 0.0010	
PCB 118	N	2815	mg/kg	0.0010	[A] < 0.0010		[A] < 0.0010		[A] < 0.0010	

Results - Soil

Client: IGSL		Ch	emtest .	Job No.:	21-28502	21-28502	21-28502	21-28502	21-28502	21-28502
Quotation No.:		Chem	test San	nple ID.:	1262174	1262175	1262176	1262177	1262178	1262179
Order No.:		Cli	ent Sam	ple Ref.:	AA155654	AA155658	AA155659	AA155663	AA155667	AA155668
		5	Sample I	_ocation:	TP01	TP03	TP04	TP06	TP09	TP09
			Samp	ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	epth (m):	0.50	0.70	0.60	0.60	0.50	1.20
			Asbes	stos Lab:	COVENTRY		COVENTRY		COVENTRY	
Determinand	Accred.	SOP	Units	LOD						
PCB 153	Ν	2815	mg/kg	0.0010	[A] < 0.0010		[A] < 0.0010		[A] < 0.0010	
PCB 138	Ν	2815	mg/kg	0.0010	[A] < 0.0010		[A] < 0.0010		[A] < 0.0010	
PCB 180	N	2815	mg/kg	0.0010	[A] < 0.0010		[A] < 0.0010		[A] < 0.0010	
Total PCBs (7 congeners)	N	2815	mg/kg	0.0010	[A] < 0.0010		[A] < 0.0010		[A] < 0.0010	
Total Phenols	U	2920	mg/kg	0.10	< 0.10		< 0.10		< 0.10	

Results - Single Stage WAC

Project: 23434 Ballyhale FRS (DBFL)

Project: 23434 Ballynale FRS (Di					-		
Chemtest Job No:	21-28502				Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1262174					Limits	
Sample Ref:	AA155654					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP01					hazardous	Hazardous
Top Depth(m):	0.50				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 1.1	3	5	6
Loss On Ignition	2610	U	%	5.8			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		8.0		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	< 0.0020		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance l	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455	U	0.0008	0.0083	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0020	0.020	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0006	0.0064	0.5	10	30
Nickel	1455	U	0.0007	0.0072	0.4	10	40
Lead	1455	U	0.0005	0.0051	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.16	1.6	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	22	210	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	6.3	63	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	12

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Results - Single Stage WAC

Project: 23434 Ballyhale FRS (DBFL)

Project: 23434 Ballynale FRS (DI							
Chemtest Job No:	21-28502				Landfill \	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1262176					Limits	
Sample Ref:	AA155659					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP04					hazardous	Hazardous
Top Depth(m):	0.60				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.42	3	5	6
Loss On Ignition	2610	U	%	4.5			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
pH	2010	U		8.1		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.010		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	< 0.0005	< 0.0005	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0004	0.0036	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.089	< 1.0	10	150	500
Sulphate	1220	U	2.3	23	1000	20000	50000
Total Dissolved Solids	1020	N	16	160	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	2.7	< 50	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.090			
Moisture (%)	10			

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Results - Single Stage WAC

Project: 23434 Ballyhale FRS (DBFL)

Project: 23434 Ballynale FRS (Di					-		
Chemtest Job No:	21-28502				Landfill \	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1262178					Limits	
Sample Ref:	AA155667					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP09					hazardous	Hazardous
Top Depth(m):	0.50				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.50	3	5	6
Loss On Ignition	2610	U	%	1.7			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
pН	2010	U		8.4		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.0060		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	< 0.0005	< 0.0005	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0014	0.014	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.25	2.5	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	25	250	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	3.5	< 50	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.090			
Moisture (%)	6.5			

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1262174	AA155654		TP01		А	Amber Glass 250ml
1262174	AA155654		TP01		А	Plastic Tub 500g
1262175	AA155658		TP03		А	Amber Glass 250ml
1262175	AA155658		TP03		А	Plastic Tub 500g
1262176	AA155659		TP04		А	Amber Glass 250ml
1262176	AA155659		TP04		А	Plastic Tub 500g
1262177	AA155663		TP06		А	Amber Glass 250ml
1262177	AA155663		TP06		А	Plastic Tub 500g
1262178	AA155667		TP09		А	Amber Glass 250ml
1262178	AA155667		TP09		А	Plastic Tub 500g
1262179	AA155668		TP09		А	Amber Glass 250ml
1262179	AA155668		TP09		А	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.

Test Methods

SOP	Title	Parameters included	Method summary
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" < "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

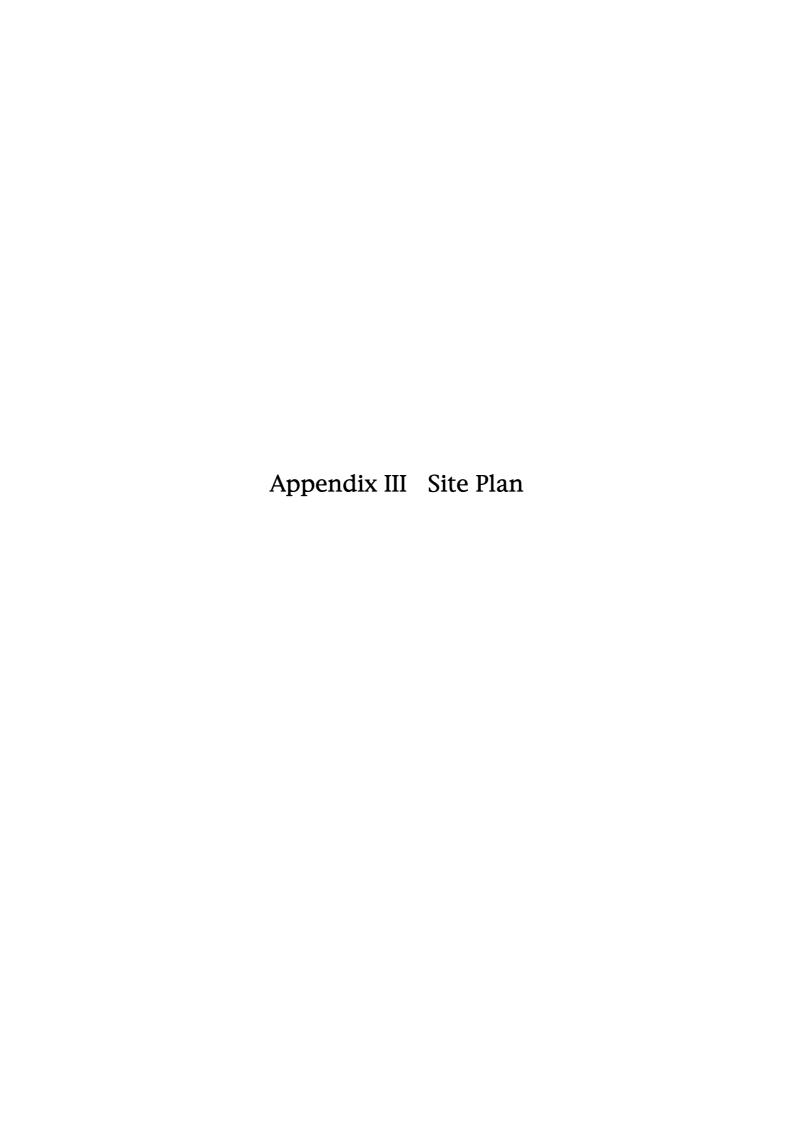
For all other tests the samples were dried at < 37°C prior to analysis

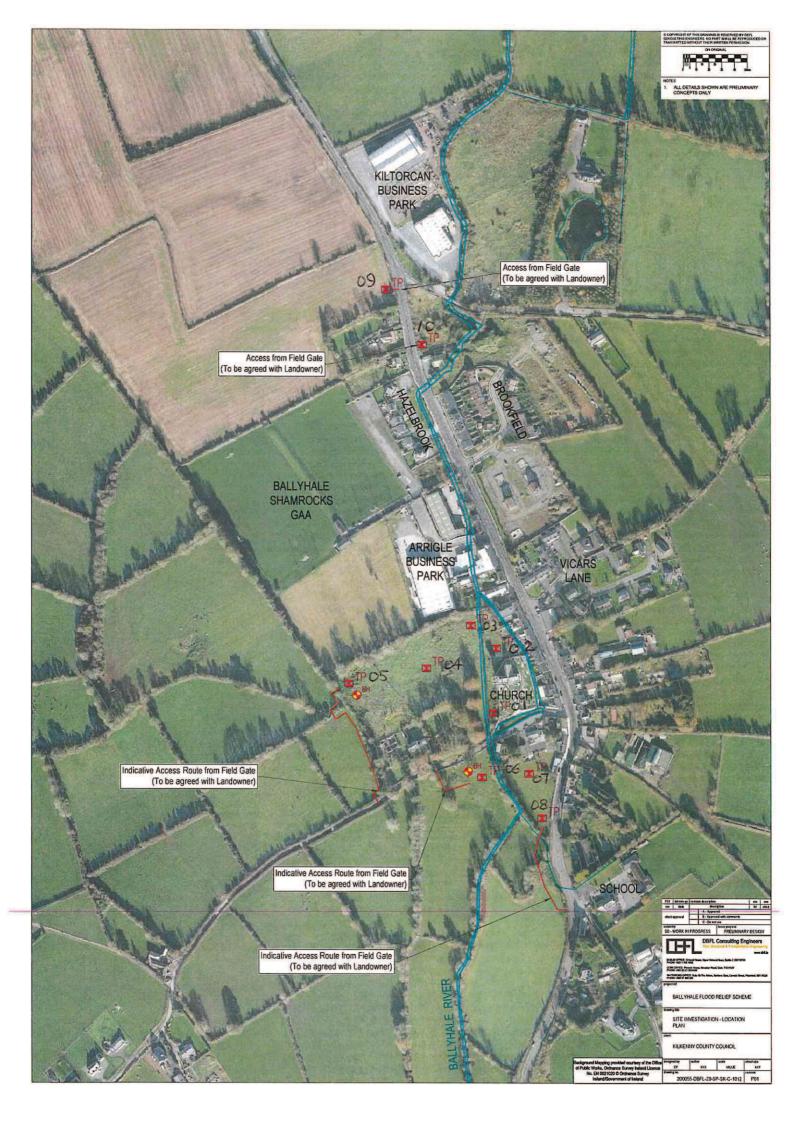
All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)


Sample Retention and Disposal


All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

